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With the development of multi-view learning, multi-view outlier detection has received increasing attention in recent years.

However, the current research still faces two challenges: (1) The current research lacks theoretical analysis tools for multi-view

outliers. (2) Most current multi-view outlier detection algorithms are based on shallow structural assumptions of the data,

such as cluster assumptions and subspace assumptions, thus they are not suitable for more complex data distributions.

In addressing these two issues, this paper proposes three occurrence mechanisms of multi-view outlier, which serve as

foundational theoretical analysis tools for multi-view outliers. Utilizing proposed mechanisms, we analyze the impact of

multi-view outliers and the information structure of multi-view data and validate our indings through experiments. Finally,

we propose a novel algorithm referred to as Information-Aware Multi-View Outlier Detection (IAMOD). In contrast to other

methods, IAMOD focuses on the information structure of multi-view data without relying on shallow structural assumptions.

By learning a compact representation of the sample that is semantically rich and non-redundant, IAMOD can accurately

identify multi-view outliers by comparing the consistency of the representations’ neighbors and views. Extensive experimental

results demonstrate that our approach outperforms several state-of-the-art multi-view outlier detection methods.

CCS Concepts: · Computing methodologies→ Anomaly detection; Neural networks.

Additional Key Words and Phrases: Outlier Detection, Multi-view Learning, Information Theory

1 INTRODUCTION

Outlier detection is an important topic in data mining and machine learning. It is widely used in various ields,

such as information security [9] and fault checking [3], fault detection [5]. However, these studies only focus on

the data from one single view.

In many real-world scenarios, data often comes from multiple sources or heterogeneous data collected by

multiple sensors. However, the detection of potential anomalous data in multi-view data has become a diicult

problem. Currently, three types of outliers have been proposed, namely attribute outliers, class outliers, and

class-attribute outliers, as shown in Figure 1. Class outliers are data samples that exhibit inconsistent feature

behavior across diferent views. Attribute outliers are data samples that exhibit abnormal behaviors in some

views. Class-attribute outlier exhibits class outlier characteristics in some views, while showing attribute outlier

properties in the other views. After HOAD [6] irst proposed the concept of horizontal outliers (class outliers),
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Fig. 1. Illustration of three types of multi-view outlier.

more and more work [4, 8, 10ś12] began to focus on the detection of multi-view outliers. Among them, the two

earlier proposed methods, AP [12] and HOAD, can only detect class outliers. Later, some methods [10, 11] based

on subspace clustering appeared. These methods impose low-rank constraints on the data representation to learn

a more robust multi-view representation that can detect multiple multi-view outliers simultaneously. However, a

common disadvantage of these subspace clustering-based methods is the inability to quickly reason about new

samples that have not been seen before. To address this problem, several neural network-based methods have been

proposed recently. MODDIS [8] uses neural networks to integrate multi-view data into a potentially complete

space in which outlier detection metrics are deined. NCMOD [4] is a state-of-the-art neural network-based

method that learns low-dimensional encoding of raw data through a multi-view autoencoder, and then exploits

the inter-view consistency of the low-dimensional encoding to detect multi-view outliers.

However, these current works only focus on multi-view outlier detection based on the behavioral characteristics

of multi-view outliers and lack a theoretical analysis of multi-view outliers. Moreover, most of these current

methods are based on the low-dimensional structure assumptions of data distribution, such as cluster structure,

subspace structure, etc., thus they are not suitable for complex data distributions.

In this paper, we revisit outliers in these multi-view data and abstract three outlier occurrence mechanisms.

Then, based on the above outlier occurrence mechanism, we study the impact of multi-view outliers on the

information structure of multi-view data. Finally, based on multi-view information theory, we propose a novel

multi-view outlier detection algorithm that can be applied to complex data distribution. Our major contributions

are outlined as:

• We summarize three important multi-view outlier occurrence mechanisms. These occurrence mechanisms

can summarize the most commonmulti-view outlier patterns and provide basic analysis tools for multi-view

outlier research.

• Based on the proposed mechanisms of multi-view outlier occurrence, we theoretically demonstrate that

multi-view outliers damage the semantic information shared between views and this is veriied through

experiments. This also indicates that the outlier occurrence mechanisms presented in this paper serve as a

powerful tool for analyzing multi-view outliers.

• We propose a novel multi-view outlier detection algorithm based on the information theory,i.e., the

Information-Aware Multi-View Outlier Detection (IAMOD). The algorithm aims to learn informative

and compact semantic representations from raw data and detect the multi-view outliers based on these
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semantic representations. Focusing on the information structure of multi-view data that is neglected by

other methods, IAMOD is not reliant on shallow assumptions about the data distribution (such as cluster

assumption and subspace clustering assumption) and can be applied to more complex data distributions.

• Extensive experiments demonstrate the efectiveness of IAMOD against state-of-the-art models. Even in

the face of complex data distribution, IAMOD can still accurately detect multi-view outliers.

2 RELATED WORKS

In this section, we introduce two topics most relevant to our approach, including multi-view outlier detection

and multi-view learning based on information theory.

2.1 Multi-View Outlier Detection

HOAD [6] is the pioneering work in multi-view outlier detection which proposed class outliers. Similarly,

clustering-based algorithms such as AP [12] can also detect class outliers, while DMOD [17] can detect both

attribute outliers and class outliers using k-means clustering. Latterly, low-rank analysis (MLRA [11] and LDSR

[10]) have been proposed, with LDSR showing better performance on datasets with many views by learning a

low-rank representation shared by all views. However, these methods can only handle datasets following the

subspace assumption. To solve this problem, SRLSP [16] performs self-expression reconstruction by using only

neighbors. The above methods based on spectral clustering or subspace clustering all face the out-of-sample

problem: cannot perform inductive reasoning on new samples. Neural network-based methods do not have this

law. MODDIS [8] uses neural networks to integrate multi-view data into a potentially complete space in which

anomaly detection metrics are deined. NCMOD [4] is the latest neural network-based method and the best one

at present. NCMOD exploits the neighbor consistency between representations from diferent views to detect

multi-view outliers.

The common problem of all the above methods is that they ignore the exploration of the underlying mechanism

of multi-view outliers and lack a theoretical analysis of multi-view outliers. Most of these methods rely on strict

data distribution assumptions, so they cannot handle really complex data distributions.

2.2 Multi-view Learning Based on Information Theory

The earliest multi-view research based on information theory [14] successfully introduced information theory

into the ield of multi-view learning. DIM [7] irst proposed the infomax principle, which maximizes the mutual

information of the global representation and local representation of the sample. However, DIM does not focus

on multi-view learning. Subsequently, inspired by DIM, the principle of maximizing mutual information is

applied to multi-view learning problems and achieved success [1]. However, Infomin [15] believes that the

representation should not contain too much redundant information, and proposes the Infomin principle to discard

redundant information. Diferent from these works, we focus on studying the impact of multi-view outliers on

the information structure of multi-view data and how to use the semantic information contained in the data to

detect outliers.

3 ALGORITHM

In this section, we irst establish the theoretical analysis basis of multi-view outliers. Then, we study the impact

of multi-view outliers on the information structure of data according to these mechanisms. Finally, a novel

multi-view outlier detection method based on information theory is proposed.
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3.1 Theoretical Analysis Basis of Multi-view Outliers

3.1.1 Information Structure of Multi-view Data. In general, multi-view data is an attempt to describe and charac-

terize an entity from diferent perspectives. No matter how diferent the data form of each view of a sample is

(such as image view and text view), they are all descriptions of the same entity and will always share information

about the entity. For example, for a dog, view 1 is the photo of the dog, and view 2 is the text describing the dog,

that is, (image of the dog, text about the dog). The two views share some information (information about the dog),

and these views have their own unique information (E.g, information about the background).

We note that the multi-view outliers will destroy the above-mentioned multi-view information structure.

For example, for a multi-view outlier such as (image of a dog, text about a cat), its two views do not contain

shared semantic information. Therefore, we can intuitively infer that the multi-view outliers will damage the

mutual information shared between views. However, there is currently a lack of theoretical analysis research on

multi-view outliers. To theoretically prove the above intuition, we need to explore the occurrence mechanism of

multi-view outliers to help establish a theoretical basis for multi-view outliers.

3.1.2 Multi-view Outlier Occurrence Mechanisms. Due to the complex and diverse occurrence process of multi-

view outliers in the real world, it is very diicult to conduct a relatively complete theoretical analysis. To address

this challenge, we summarize three important multi-view outlier occurrence mechanisms that can cover most

outlier generation processes:

Deinition 3.1. Random Mismatch: The feature of view v of any sample is randomly replaced by the feature

sampled from the data distribution of the view v according to a certain probability, which is called the random

mismatch abnormality of view v.

The random mismatch mechanism covers outlier patterns due to the missing associativity of features across

diferent views. For example, when some data from diferent views of multi-view data are independently collected

and managed and lack alignment operations on samples, the resulting data association will be out of order. The

random mismatch mechanism will produce class outliers.

Deinition 3.2. Targeted Tampering: The data of view v is artiicially tampered with so that the tampered

data obeys the target data distribution, which is called targeted tampering of view v.

The targeted tampering mechanism models the outlier patterns caused by human tampering in the real

world. For example, in a federated learning setting, if data from diferent views are stored in diferent client nodes,

if one of these nodes is malicious, the malicious node’s data tampering behavior is a kind of targeted tampering.

The targeted tampering may produce class outliers, attribute outliers, and class-attribute outliers.

Deinition 3.3. Random Failure: The samples in view v are replaced with random values or signiicant outliers

with a certain probability, which is called a random failure of view v.

The random failuremodels the unavoidable outliers caused by natural causes in the process of data acquisition

and storage in the real world. For example, signiicant outliers is introduced when a sensor that collects data fails

or a failure occurs during data transmission. Random failure usually introduces attribute outliers that are far

from the normal samples in each view.

The three multi-view outlier occurrence mechanisms we proposed cover the causes of most multi-view outliers

and can be used as a basic analysis tool for multi-view outliers. In the next section, we will analyze the impact of

multi-view outliers on shared semantic information across views based on these mechanisms.
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3.2 Multi-view Outliers Decrease Semantic Information Shared across Views

By analyzing various multi-view outlier occurrence mechanisms, we will intuitively conclude that multi-view

outliers will reduce semantic information shared across views. Next, we theoretically demonstrate this conclusion

based on our proposed multi-view outlier occurrence mechanisms.

3.2.1 Theoretical Analysis. Here we theoretically prove the above-mentioned conclusion. We irst consider the

data distribution under ideal conditions without outliers. For brevity, we take multi-view data from two views as

an example. It is assumed that there are c semantic classes in the multi-view data. Assuming without outliers

occur, we can model the multi-view joint distribution as :

PV1V2 (i, j) =

{
pi , 0 < pi < 1 (i = j and i = 1, 2, ..., c)

0, (other cases)
(1)

where PV1V2 (i, j) represents the probability of a sample that belongs to class i in view 1 and belongs to class j in

view 2. For clarity, the joint distribution is recorded as Table 1. PV1V2 (outlier , j) or PV1V2 (i,outlier ) represents the

probability of a sample that appears as a signiicant outlier in a certain view. Normal samples correspond to the

diagonal elements (excluding PV1V2 (i = outlier , j = outlier )) of Table 1.

Table 1. Ideal multi-view joint distribution without considering the occurrence of multi-view outliers

v1

v2 1 2 3 ... c outlier

1 p1 0 0 ... 0 0

2 0 p2 0 ... 0 0

3 0 0 p3 ... 0 0

... ... ... ... ... ... ...

c 0 0 0 ... pc 0

outlier 0 0 0 ... 0 0

The shared semantic information in an ideal data distribution without outliersMI ideal is:

MI ideal =
∑

i, j

PV1V2 (i, j)loд(
PV1V2 (i, j)

PV1 (i)PV2 (j)
)

=

∑

i,j

PV1V2 (i, j)loд(
PV1V2 (i, j)

PV1 (i)PV2 (j)
) +

∑

i=j

PV1V2 (i, j)loд(
PV1V2 (i, j)

PV1 (i)PV2 (j)
)

= 0 +

c∑

i=1

piloд(
pi

pi · pi
)

= −

c∑

i=1

piloд(pi )

(2)

Next, based on our proposed multi-view outlier occurrence mechanisms, we demonstrate that multi-view

outliers will lead to the reduction of semantic information shared across views.

(1) For random mismatch: Without loss of generality, we assume that random mismatch occurs in any one

of the two views of the sample. Assuming that the probability of random mismatch occurrence is 0 < α < 1, then

ACM Trans. Knowl. Discov. Data.
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the probability of random mismatch occurring in view 1 or view 2 are both α/2. It is not diicult to calculate, the

multi-view joint distribution considering random mismatch is:

Prm
V1V2

(i, j) =(1 − α)PV1V2 (i, j) +
α

2
PV2 (j)PV1V2 (i, i)

+

α

2
PV1 (i)PV1V2 (j, j)

(3)

Consider the multi-view marginal distribution under the random mismatch mechanism:

Prm
V1

(i) =

c∑

j=1

Prm
V1V2

(i, j) = PV1 (i)

Prm
V2

(j) =

c∑

i=1

Prm
V1V2

(i, j) = PV2 (j)

(4)

The random mismatch mechanism does not change the marginal distribution of each view. This is also intuitive

since random mismatch exceptions just destroy the association between views. Considering random mismatch,

the mutual information between viewsMI rm is:

MI rm =
∑

i, j

Prm
V1V2

(i, j)loд(
Prm
V1V2

(i, j)

Prm
V1

(i)Prm
V2

(j)
)

=

∑

i

[(1 − α)pi + αp
2
i ]loд(

(1 − α)pi + αp
2
i

p2i
)

+ αloдα
∑

i,j

pipj

<

∑

i

[(1 − α)pi + αp
2
i ]loд(

(1 − α)pi + αp
2
i

p2i
)

<

∑

i

[(1 − α)pi + αpi ]loд(
(1 − α)pi + αpi

p2i
)

= −

c∑

i=1

piloд(pi )

=MI ideal

(5)

So far, we have demonstrated that the outliers produced by random mismatch will lead to the reduction of

semantic information shared across views.

(2) For targeted tampering: Artiicial directed tampering attacks are complex and diverse. To simplify the

problem, we consider a common abnormal situation: the attacker modiies a certain class of sample features in a

view to another semantic class feature. Without loss of generality, we assume that the attacker tampered with

the view 1 feature of samples belonging to semantic class 1 so that the view 1 feature belong to semantic class 2.

Considering targeted tampering, the multi-view joint distribution is:

P t t
V1V2

(i, j) =





PV1V2 (i, j), (i = j and i = 2, ..., c)

PV1V2 (1, 1), (i = 2 and j=1)

0, (other cases)

(6)
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Thus, the mutual information between views is:

MI t t =
∑

i, j

P t t
V1V2

(i, j)loд(
P t t
V1V2

(i, j)

P t t
V1
(i)P t t

V2
(j)

)

=p2loд(
p2

(p1 + p2)p2
) +

k∑

i=3

piloд(
pi

pipi
)

+ p1loд(
p1

(p1 + p2)p1
)

=p1loд(
p1

p1 + p2
) + p2loд(

p2

p1 + p2
) +MI ideal

<MI ideal

(7)

Therefore, we successfully demonstrate that the outliers produced by targeted tampering will lead to the reduction

of semantic information shared across views.

(3) For random failure: We assume that the random failure rate of view 1 is α1, and the random failure rate of

view 2 is α2. Considering the random failure, the multi-view joint distribution is:

P
r f

V1V2
(i, j) =





(1 − α1)(1 − α2)PV1V2 (i, j), (i, j=1,2...c)

α1(1 − α2)PV2 (j), (i=outlier and j=1,2...c)

α2(1 − α1)PV1 (i), (j=outlier and i=1,2...c)

α1α2, (i=outlier and j=outlier)

(8)

We compute the semantic information shared across views according to the multi-view joint distribution :

MI r f =
∑

i, j

P
r f

V1V2
(i, j)loд(

P
r f

V1V2
(i, j)

P
r f

V1
(i)P

r f

V2
(j)

)

=

c∑

i=1

(1 − α1)(1 − α2)piloд[
(1 − α1)(1 − α2)pi

(1 − α1)pi (1 − α2)pi
]

+

c∑

j=1

(1 − α2)α1pjloд(
(1 − α2)α1pj

α1(1 − α2)pj
)

+

c∑

i=1

(1 − α1)α2piloд(
(1 − α1)α2pi

α2(1 − α1)pi
)

+ α1α2loд(
α1α2

α1α2
)

=(1 − α1)(1 − α2)MI ideal

⩽MI ideal

(9)

Thus, the multi-view outliers produced by random failure will lead to less semantic information shared between

views. In summary, we demonstrate that the multi-view outlier will lead to a reduction of semantic information

shared across views.

3.2.2 Experimental verification. We construct a series of outlier datasets with diferent types and proportions of

outliers on the Caltech-7 dataset, and then estimate the sum of the mutual information between all view pairs

according to the mutual information estimation method proposed by MINE [2] to get igure 2. As shown in the

ACM Trans. Knowl. Discov. Data.
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Fig. 2. Sum of mutual information values for all view pairs of the Caltech-7 dataset at diferent outlier ratios γ .
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Contrastive learning maximing semantic  information

Cross-view prediction discards semantically irrelevant information

Input sample space

�1 �2
View 1

View 2

multi-view outlier normal sample

sample � sample �

Fig. 3. Overview of the proposed IAMOD. We use contrastive learning to maximize the mutual information of representations

from diferent views. Meanwhile, we use cross-view prediction to minimize the conditional entropy of representations from

diferent views to discard semantically irrelevant information. Finally, we learn semantically rich and compact semantic

representations for all samples.

igure 2, as the outlier ratio increases, the mutual information between views will decrease. This validates our

previous analysis that outliers disrupt shared semantic information between views.

3.3 The Proposed Method

Inspired by the connection between multi-view outliers and the information structure of multi-view data, we

propose IAMOD (as shown in Figure 3). IAMOD aims to learn representations containing precise semantic

information so that the multi-view outliers with abnormal semantic information can be detected based on the

learned semantic representations. The key to learning accurate semantic representations is to ensure that semantic

representations contain as much semantic information as possible without semantically irrelevant information. To

ACM Trans. Knowl. Discov. Data.
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�� ��

Fig. 4. Design motivation for the contrastive learning task and the cross-view prediction task

achieve this goal, we need to address two problems: (1) How to make the representation capture as much semantic

information as possible? (2) How to make the representation discard semantically irrelevant information? To

address these two problems, we separately design two tasks: the contrastive learning task and the cross-view

prediction task (as shown in Figure 4).

3.3.1 Maximize semantic information shared by views. Take the case of two views as an example. When the

learned representations Z i lack semantic information, the contrastive learning task drives the representations Z i

to capture more semantic information, that is, the mutual information I (Z 1;Z 2) between view 1 and view 2 (as

shown in Figure 4). Speciically, we maximize the shared information of the representation Z 1 of view 1 and the

representation Z 2 of view 2 by optimizing the contrastive loss:

LCL = −
1

N

N∑

i=1

log
esim(Z

1
i ,Z

2
i )

∑N
j=1 e

sim
(
Z1
i ,Z

2
j

) (10)

whereN is the number of samples, sim(·, ·) is euclidean distance,Z1
i is the representation of sample i corresponding

to view 1, and so on. According to previous research [13], contrastive loss is related to mutual information :

LCL ≥ log(N ) − I (Z 1;Z 2). Therefore, by minimizing the contrastive loss, we can force Z 1 and Z 2 to capture as

much shared semantic information as possible.

3.3.2 Discard semantically irrelevant information. When the learned representation Z i contains redundant

semantically irrelevant information, the cross-view prediction task will force the representation Z i to discard

semantically irrelevant information H (Z 1 |Z 2) and H (Z 2 |Z 1) (as shown in the Figure 4).

Take minimizing conditional entropy H (Z 1 |Z 2) as an example. Minimizing H (Z 1 |Z 2) is equivalent to maximiz-

ing EPZ 1
,Z 2

[
log P

(
Z 1 | Z 2

) ]
= −H

(
Z 1 | Z 2

)
. To avoid the intractable EPZ 1

,Z 2

[
log P

(
Z 1 | Z 2

) ]
, we introduce a

variational distribution Qϕ

(
Z 1 | Z 2

)
with ϕ as parameter. Notice:

EPZ 1
,Z 2

[
log P

(
Z 1 | Z 2

) ]

=max
Qϕ

EPZ 1
,Z 2

[
logQϕ

(
Z 1 | Z 2

) ]

+ DKL

(
P
(
Z 1 | Z 2

)
∥Qϕ

(
Z 1 | Z 2

) )

≥max
Qϕ

EPZ 1
,Z 2

[
logQϕ

(
Z 1 | Z 2

) ]

(11)
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where DKL (·∥·) means KullbackśLeibler divergence. Therefore, EPZ 1
,Z 2

[
logQϕ

(
Z 1 | Z 2

) ]
is a lower bound of

EPZ 1
,Z 2

[
log P

(
Z 1 | Z 2

) ]
. For simplicity, we let Qϕ

(
Z 1 | Z 2

)
be the Gaussian distribution N

(
Z 1 | д2(Z 2),σ I

)
.

Then minimizing H (Z 1 |Z 2) is equivalent to minimizing L
1 |2
CP

:

L
1 |2
CP
=Eд2(Z 2),Z 1∼Pд2(Z 2),Z 1

[Z 1 − д2(Z 2)
2
2

]

=

1

N

N∑

i=1

Z 1
i − д2(Z 2

i )
2
2

(12)

where д2(·) is the predictor that predicts view 1 from view 2. Similarly, the loss function to achieve minimizing

H (Z 2 |Z 1) is:

L
2 |1
CP
=Eд1(Z 1),Z 2∼Pд1(Z 1),Z 2

[Z 2 − д1(Z 1)
2
2

]

=

1

N

N∑

i=1

Z 2
i − д1(Z 1

i )
2
2

(13)

Therefore, the Cross-view prediction loss function is:

LCP =L
1 |2
CP
+ L

2 |1
CP

=

1

N

N∑

i=1

[Z 2
i − д1(Z 1

i )
2
2
+

Z 1
i − д2(Z 2

i )
2
2

] (14)

3.3.3 Objective Function. The overall objective function of IAMOD is:

L =LCL + λLCP (15)

where λ is hyper-parameter. This loss ensures that the representation captures as much semantic information as

possible while discarding semantically irrelevant information.

3.3.4 Outlier Score Measurement. With the learned latent representations, we propose an outlier score function:

S (i) = SNC (i) + SVC (i) (16)

where

SNC (i) =
∑

Z j ∈knn(Zi )

[Zi − Z j

2
2

]
,

(Zi = Z 1
i ⊕ Z 2

i ... ⊕ ZV
i )

(17)

SVC (i) =
∑

v1,v2

[∥Zv2

i − дv1 7→v2 (Zv1

i )∥22

+∥Zv1

i − дv2 7→v1 (Zv2

i )∥22 ]

(18)

knn(·) is the k nearest neighbors. And the дv1 7→v2 (·) means the predictor that predicts view v2 from view v1.

SNC (i) is the neighbor consistency score (concatenate all the representations Zv
i of all views of sample i to get Zi ).

SVC (i) is the view consistency score (cross-view prediction loss for the sample i). The outlier score function can

detect all three types of outliers simultaneously: (1) For an attribute outlier i: Since it is a signiicant outlier in all

views, it will have a larger neighbor consistency score. (2) For a class outlier i: Since it has inconsistent semantic

information in diferent views, it will have a larger view consistency score. (3) For a class-attribute outlier i: Since

it contains the characteristics of both attribute outlier and class outlier, it will have a larger neighbor consistency

score and view consistency score.
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Table 2. Datasets and related description: the table data is the feature dimension of each view (with feature name in

parenthesis)

View Synthetic dataset
UCI datasets Real multi-view datasets

iris pima zoo ionosphere letter MSRC-v1 AWA-10 Caltech-7

1 2 2 4 8 17 8 24 (CM) 2688 (CQ) 48 (Gabor)

2 2 2 4 8 17 8 576 (HOG) 2000 (LSS) 40 (WM)

3 - - - - - - 512 (GIST) 252 (PHOG) 254 (CENTRIST)

4 - - - - - - 256 (LBP) 2000 (SIFT) 1984 (HOG)

5 - - - - - - 254 (CENT) 2000 (RGSIFT) 512 (GIST)

6 - - - - - - - 2000 (SURF) 928 (LBP)

Number of instances 400 150 768 101 351 1300 210 800 1474

Number of categories 2 3 2 7 2 26 7 10 7

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Datasets. In this section, we use a synthetic dataset, UCI datasets, and three real multi-view datasets

that are commonly used in multi-view learning. Details about the dataset are summarized in Table 2. In order

to demonstrate the superiority of IAMOD in processing data that does not meet the cluster assumption, we

construct a synthetic dataset. The synthetic dataset consists of a two-view dataset with one cluster structure but

two categories, which does not meet the cluster structure assumption. View 1 is 400 data points sampled through

a two-dimensional Gaussian distribution N (0, 0, 0.1, 0.1, 0), and all sample points are divided into two categories

by the straight line y=x. We perform a linear transformation on the data of view 1 and add random perturbation

to obtain the data of view 2. The proportion of attribute outliers, class outliers, and class attribute outliers is all

5%. The proportion of attribute outliers, class outliers, and class attribute outliers is also all 5% in the real dataset.

All original datasets are free of outliers. Like most multi-view outlier detection work, we follow the approach

of previous work [6] to generate multi-view outliers. To construct a certain proportion of attribute outliers, we

randomly select some samples from the dataset and replace their features with random values. To construct a

certain proportion of class outliers, we randomly select some sample pairs from the dataset and then swap the

features for half of the views. To construct class-attribute outliers, we randomly select some sample pairs from

the dataset, irst swap the features of half of the views, and then replace the features of the other half of the views

with random values.

4.1.2 Baselines. We compare the proposed method with six state-of-the-art multi-view outlier detection methods.

HOAD [6] and AP [12] are cluster-based methods that can efectively detect class outliers. MLRA [11] and LDSR

[10] are methods based on subspace self-expression theory, which can efectively detect three kinds of outliers

simultaneously. MODDIS [8] and NCMOD [4] are state-of-the-art neural network-based methods that show

superior performance in most cases.

4.1.3 Implementation details. We conducted our experiments on RTX 3090. The number of nearest neighbors in

the outlier score function is set to 5. The trade-of parameter λ in the loss function is set to 10 (Synthetic), 100

(Caltech-7), 1 (AWA-10), and 10 (MSRC-v1) on diferent datasets. All encoders f (·) and inter-view predictors д(·)

are implemented with a three-layer MLP(Multilayer Perceptron). The speciic network structure is shown in

Table 3. We use the Adam optimizer to optimize all encoders and predictors. The learning rate is set to 0.001 in all

experiments. We follow the previous work [6, 8, 10, 11] and use AUC (area under ROC curve) as the evaluation

metric. The source code is released at Github1.

1https://github.com/MaybeLL/IAMOD
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MSRC-v1 AWA-10 Caltech-7

Encoder

FC(input dim→8) FC(input dim→128) FC(input dim→128)

BatchNormLayer BatchNormLayer BatchNormLayer

ReLU ReLU ReLU

FC(8→8) FC(128→64) FC(128→64)

Softmax Softmax Softmax

Predictor

FC(8→8) FC(64→128) FC(64→128)

BatchNormLayer BatchNormLayer BatchNormLayer

ReLU ReLU ReLU

FC(8→8) FC(128→64) FC(128→64)

BatchNormLayer BatchNormLayer BatchNormLayer

ReLU ReLU ReLU

Table 3. Network architecture details. "FC(x → y)" indicates a Fully Connected Layer with x input feature dimensions and y

output feature dimensions.

Table 4. The comparison results on the synthetic dataset. AUC values (mean ± standard deviation) are reported. The best

and the second-best results are in bold and underline, respectively.

AUC (mean ± std)

HOAD 0.435±0.023

AP 0.672±0.038

MLRA 0.779±0.121

LDSR 0.824±0.061

MODDIS 0.972±0.018

NCMOD 0.881±0.053

IAMOD 0.984±0.062

4.2 Comparisons with State of the Arts

4.2.1 Synthetic Datasets. In order to demonstrate the superiority of IAMOD in processing data that does not

meet the cluster assumption, we use a synthetic dataset to evaluate all methods. The experimental results are

recorded in Table 4. Since IAMOD is constructed based on the semantic information structure of the data rather

than the clustering structure, IAMOD can handle datasets that do not meet the cluster assumptions well. Likewise,

MODDIS and NCMOD are not based on cluster assumption, so these two methods also perform signiicantly

better than other methods.

4.2.2 UCI Datasets. To evaluate the detection ability of all methods for various multi-view outliers, we conduct

experiments on the UCI dataset with two views. The experimental results are recorded in Tables 5, 6, 7. Experiments

show that HOAD and AP can better detect class outliers, but perform poorly in attribute outlier detection. Because

both methods are only designed to detect class outliers. Due to the small feature dimension and data size of these

UCI datasets, neural network-based methods cannot fully exploit their full capabilities. Therefore, the neural

network-based methods (MODDIS, NCMOD, and IAMOD) only show insigniicant advantages compared with

MLRA and LDSR. However, even so, IAMOD still outperforms other methods in most cases and can efectively

detect various outliers.
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Table 5. Evaluate the ability of various methods to detect atribute outliers. Comparison results on the UCI dataset with

10% atribute outliers. AUC values (mean ± standard deviation) are reported. The 1st/2nd best results are indicated in

bold/underline.

iris pima zoo ionosphere letter

HOAD 0.125±0.281 0.919±0.177 0.764±0.215 0.565±0.115 0.451±0.079

AP 0.039±0.046 0.024±0.016 0.416±0.165 0.480±0.092 0.445±0.028

MLRA 0.974±0.036 0.930±0.038 0.846±0.091 0.641±0.171 0.718±0.058

LDSR 0.976±0.049 0.987±0.011 0.932±0.042 0.729±0.067 0.997±0.001

MODDIS 0.740±0.195 0.714±0.027 0.896±0.018 0.703±0.033 0.834±0.061

NCMOD 0.983±0.012 0.999±0.001 0.867±0.051 0.619±0.031 0.998±0.001

IAMOD 0.996±0.002 0.997±0.002 0.934±0.038 0.735±0.036 0.999±0.003

Table 6. Evaluate the ability of various methods to detect class outliers. Comparison results on the UCI dataset with 10%

class outliers. AUC values (mean ± standard deviation) are reported. The 1st/2nd best results are indicated in bold/underline.

iris pima zoo ionosphere letter

HOAD 0.655±0.120 0.529±0.058 0.586±0.025 0.444±0.027 0.559±0.029

AP 0.962±0.038 0.497±0.031 0.940±0.036 0.947±0.027 0.837±0.015

MLRA 0.836±0.043 0.691±0.025 0.639±0.032 0.814±0.021 0.637±0.025

LDSR 0.750±0.087 0.637±0.035 0.824±0.061 0.833±0.013 0.752±0.027

MODDIS 0.816±0.082 0.697±0.037 0.784±0.069 0.789±0.039 0.857±0.020

NCMOD 0.591±0.141 0.533±0.035 0.839±0.052 0.841±0.032 0.548±0.023

IAMOD 0.934±0.024 0.724±0.028 0.903±0.067 0.863±0.031 0.874±0.028

4.2.3 Real Multi-View Datasets. To evaluate the ability of each method to handle complex data distribution, we

conduct experiments on a real multi-view dataset with multiple views, and high dimensions. MLRA can only

process those datasets with the same feature dimension per view, so it cannot participate in the comparison. The

experimental results are recorded in Table 8. HOAD and AP perform very poorly compared to other methods.

This is because both HOAD and AP depend on the constraints between pairs of views, and it is diicult to deal

with a large number of views. Due to the small number of samples of MSRC-v1, it is diicult to train the neural

network on this dataset. Therefore, on MSRC-v1, the subspace-based method LDSR performs slightly better than

the neural network-based methods MODDIS, NCMOD and IAMOD. Since IAMOD is an algorithm based on the

information structure of multi-view data, it does not depend on other strict data distribution assumptions. So on

real complex multi-view datasets, IAMOD is superior to the method NCMOD based neighbor structure and the

subspace-based method LDSR.

4.2.4 Ablation Study. In this part, we conduct the ablation study to further demonstrate the efectiveness of the

proposed contrastive loss and cross-view prediction loss. The results of the ablation study are shown in Table 9. It

ACM Trans. Knowl. Discov. Data.
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Table 7. Evaluate the ability of various methods to detect class-atribute outliers. Comparison results on the UCI dataset

with 10% class-atribute outliers. AUC values (mean ± standard deviation) are reported. The 1st/2nd best results are indicated

in bold/underline.

iris pima zoo ionosphere letter

HOAD 0.448±0.155 0.354±0.084 0.740±0.028 0.429±0.067 0.248±0.111

AP 0.950±0.029 0.435±0.240 0.855±0.067 0.902±0.010 0.789±0.028

MLRA 0.879±0.032 0.746±0.022 0.815±0.054 0.722±0.034 0.654±0.031

LDSR 0.926±0.030 0.947±0.017 0.877±0.047 0.787±0.029 0.953±0.004

MODDIS 0.866±0.072 0.714±0.087 0.858±0.057 0.736±0.011 0.828±0.048

NCMOD 0.953±0.037 0.975±0.010 0.911±0.035 0.782±0.021 0.979±0.009

IAMOD 0.962±0.033 0.971±0.007 0.917±0.016 0.810±0.017 0.999±0.001

Table 8. The comparison results on the real multi-view datasets. AUC values (mean ± standard deviation) are reported. The

best and the second-best results are in bold and underline, respectively.

MSRC-v1 AWA-10 Caltech-7

HOAD 0.367±0.102 0.349±0.062 0.348±0.119

AP 0.512±0.035 0.461±0.026 0.459±0.041

LDSR 0.971±0.011 0.737±0.084 0.947±0.023

MODDIS 0.961±0.025 0.821±0.024 0.942±0.016

NCMOD 0.938±0.022 0.914±0.016 0.941±0.019

IAMOD 0.963±0.010 0.939±0.013 0.954±0.008

Table 9. The results of ablation experiments on the real multi-view datasets. AUC values (mean ± standard deviation) are

reported. The best and the second-best results are in bold and underline, respectively.

MSRC-v1 AWA-10 Caltech-7

LCL 0.906±0.005 0.866±0.006 0.934±0.038

LCP 0.886±0.042 0.799±0.005 0.881±0.012

LCL + LCP 0.967±0.017 0.909±0.087 0.957±0.025

can be seen that applying the contrastive learning task and the cross-view prediction task together outperforms

applying one task alone, which demonstrates the efectiveness of our learning task design.

4.3 Parameter Analysis

Our method has two hyperparameters λ and k , where λ is the trade-of parameter in the loss function and k

is the nearest neighbors number in the neighbor consistency score function. We conduct parameter analysis

experiments on the Caltech-7 dataset and the results are recorded in Figure 5. We can observe that our method is

fairly robust with various values of λ and k . Generally, we set λ to 100 and k to 6.
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Fig. 5. Parameter analytical experiments on the Caltech-7 dataset.

5 CONCLUSION

We propose three signiicant multi-view outlier occurrence mechanisms that bridge the gap in theoretical

multi-view outlier analysis. We then use these mechanisms to analyze the impact of multi-view outliers on the

information structure of multi-view data. Based on this analysis, we introduce a novel multi-view outlier detection

algorithm grounded in information theory. Our experiments demonstrate the superior performance of IAMOD,

which can accurately detect even the most complex multi-view outliers. We hope that our work will stimulate

more researchers to take an interest in multi-view outlier detection. Our approach provides a perspective based

on information theory. In the future, we plan to focus on addressing the problem of multi-view outlier detection

in supervised or semi-supervised scenarios. We will also explore the relationship between information bottleneck

theory and this problem.
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